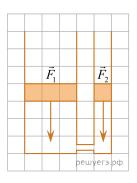

Централизованное тестирование по физике, 2012

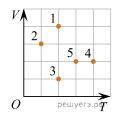

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Прибор, предназначенный для измерения влажности, это:
 - 1) секундомер
- 2) гигрометр
- 3) линейка
- 4) мензурка
- 5) амперметр
- **2.** В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_{I}=28t-5,2t^{2}$ и $x_{2}=-5t-3,7t^{2}$ (x_{1},x_{2} — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt ,
 - 1) 22 c
- 2) 19 c
- 3) 17 c
- 4) 15 c
- 5) 13 c
- 3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью <01> 33 км/ч, второй $--<v_2>=38$ км/ч, третий $--<v_3>=25$ км/ч, то всю трассу велосипедист проехал со средней скоростью <v>> пути , равной:
- 1) 31 км/ч 2) 32 км/ч 3) 33 км/ч 4) 34 км/ч 5) 35 км/ч
- **4.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:

- 5. Камень, брошенный горизонтально с некоторой высоты, упал на поверхность Земли через промежуток времени $\Delta t = 2$ с от момента броска. Если модуль начальной скорости $v_0 = 15 \text{ м/c}$, то модуль его начальной скорости v_0 в момент падения был равен:
 - 1) 20 m/c
- 2) 25 m/c
- 3) 30 m/c
- 4) 32 m/c
- 5) 35 m/c
- 6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_1 = 36 H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

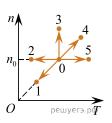
- 1) 4 H
- 2) 12 H
- 3) 36 H
- 4) 53 H
- 5) 78 H


7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерен	ние	Температура, К	Давление, кПа	Объем, л
1		330	300	9,1
2		340	300	9,4
3		350	300	9,7
4		360	300	10,0
5		370	300	10,2

Такая закономерность характерна для процесса:

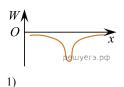
- 1) адиабатного
- 2) изобарного
- 3) изотермического
- 4) изохорного
- 5) циклического

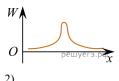

8. На V-Т диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

- 1) 1 2) 2
- 3)3

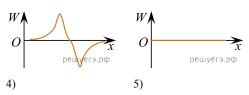
5) 5

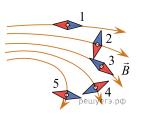
9. На рисунке изображена зависимость концентрации n молекул от температуры T для пяти процессов с идеальным газом, количество вещества которого постоянно. Давление газа р изохорно увеличивалось в процессе:


- 1) 0-1 2) 0-2 3) 0-3 4) 0-4
- 5) 0 5


10. Если при трении эбонитовой палочки о шерсть на ней появились избыточные электроны общей массой $m = 27.3 \cdot 10^{-19}$ кг, то палочка приобретет заряд q равный:

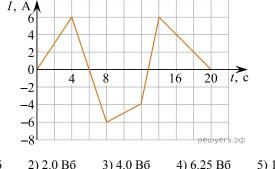

- 1) -100 нКл
- 2) -150 нКл
- 3) -240 нКл
- 4) -340 нКл
- 5) -480 нКл


11. Точечный отрицательный заряд q_0 движется параллельно оси Ox, проходящей через неподвижный отрицательный точечный заряд q_1 и неподвижный положительный точечный заряд q_2 (см. рис.). Если $q_2 = -q_1$, то график зависимости потенциальной энергии взаимодействия W заряда q_0 с неподвижными зарядами от его координаты x приведен на рисунке, обозначенном цифрой:

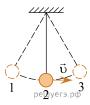

Примечание: влиянием неподвижных зарядов на траекторию движения q_0 пренебречь. Условие уточнено редакцией РЕШУ ЦТ.

- 1) 1
- 2) 2
- 3)3 4) 4
- 5) 5

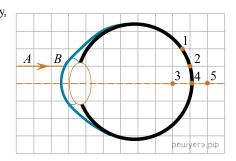
12. Пять резисторов, сопротивления которых $R_1 = 120$ Ом, $R_2 = 30$ Ом, $R_3 = 15$ Ом, $R_4 = 60$ Ом и $R_5 = 24$ Ом, соединены параллельно и подключены к источнику постоянного тока. Если сила тока в источнике I=6 A, то в резисторе R_1 сила тока I_1 равна:


- 1) 1,6 A
- 2) 1,4 A
- 3) 0,6 A
- 4) 0,3 A
- 5) 0,1 A

13. В магнитном поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:


3)3 1) 1 2) 2 5)5

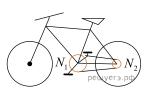
14. На рисунке изображен график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки L=2,5 Γ н, то собственный магнитный поток Φ , пронизывающий витки катушки, в момент времени t=8 с равен:


- 1) 1,6 Вб
- 2) 2,0 Вб
- 3) 4,0 Вб
- 4) 6,25 B6
- 5) 15 Вб

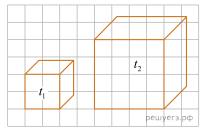
15. Математический маятник совершает свободные гармонические колебания. Точки 1 и 3 — положения максимального отклонения груза от положения равновесия (см. рис.). Если в точке 3 фаза колебаний маятника φ_3 $=\pi$, то в точке 1 фаза колебаний φ_1 была равна: Условие уточнено редакцией РЕШУ ЦТ.

- 1) 0 2) $\frac{\pi}{2}$ 3) π 4) $\frac{3\pi}{2}$ 5) 3π

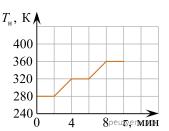
16. На рисунке изображен глаз человека. Если луч света АВ пройдет через точку, обозначенной цифрой ..., то у человека дефект зрения — близорукость. Условие уточнено редакцией РЕШУ ЦТ.

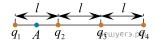


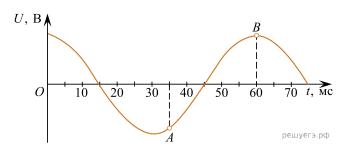
- 1) 1 2) 2
- 3)3
- 4) 4


5) 5

- 17. Если при облучении фотонами металла, для которого работа выхода $A_{\rm Bыx}$ = 3 эВ, максимальная кинетическая энергия фотоэлектронов $E_{\rm K}^{max}$ = 8 эВ, то энергия фотонов E равна:
 - 1) 2 ₃B
- 2) 3 ₉B
- 3) 5 ₉B
- 4) 8 ₉B
- 5) 11 ₉B
- **18.** Атомный номер мышьяка Z = 33, а удельная энергия связи одного из его изотопов $\varepsilon = 8,7$ МэВ/нуклон. Если энергия связи нуклонов в ядре этого изотопа $E_{\rm CB}$ = 653 МэВ, то число нейтронов N в ядре равно:
 - 1) 12
- 2) 16
- 3) 27
- 4) 32


19. Диаметр велосипедного колеса $d=66\,$ см, число зубьев ведущей звездочки $N_1=44,$ ведомой — N_2 = 14 (см. рис.). Если велосипедист равномерно крутит педали с частотой v = 82 об/мин, то модуль скорости V велосипеда равен ... $\kappa m/ч$.


- **20.** К бруску массой m = 0,64 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 40 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l = 16 см). Если длина пружины в недеформированном состоянии $l_0 = 12$ см, то модуль ускорения бруска равен ... $\mathbf{д}\mathbf{m}/\mathbf{c}^2$.
- **21.** На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Длина стороны кубика a=10 см. Если минимальный объем воды ($\rho_{\rm B}=1,00~{\rm г/cm}^3$), которую нужно налить в сосуд, чтобы кубик начал плавать, $V_{\rm min}=214~{\rm cm}^3$, то масса m кубика равна ... Γ .
- **22.** На невесомой нерастяжимой нити длиной l=1,28 м висит небольшой шар массой M=58 г. Пуля массой m=4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **23.** Идеальный одноатомный газ, начальный объем которого $V_1 = 1 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением p_1 . Газ нагревают сначала изобарно до объема $V_2 = 3 \text{ м}^3$, а затем продолжают нагревание при постоянном объеме до давления $p_2 = 5 \cdot 10^5$. Если количество теплоты, полученное газом при переходе из начального состояния в конечное, Q = 2,35 МДж, то его давление p_1 в начальном состоянии равно ... кПа.
- **24.** Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 8$ °C, а второго $t_2 = 80$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.


25. На рисунке изображен график зависимости температуры $T_{\rm H}$ нагревателя тепловой машины, работающей по циклу Карно, от времени τ . Если температура холодильника тепловой машины $T_{\rm X}=-3$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.

26. Четыре точечных заряда $q_1=0.75$ нКл, $q_2=-0.75$ нКл, $q_3=0.9$ нКл, $q_4=-2.5$ нКл расположены в вакууме на одной прямой (см. рис.). Если в точке A, находящейся посередине между зарядами q_1 и q_2 , модуль напряженности электростатического поля системы зарядов E=15 кВ/м, то расстояние l между соседними зарядами равно ... **мм**.

- **27.** Аккумулятор, ЭДС которого ε = 1,4 В и внутреннее сопротивление r = 0,1 Ом, замкнут нихромовым (c = 0,46 кДж/(кг · K) проводником массой m = 21,3 г. Если на нагревание проводника расходуется α = 60% выделяемой в проводнике энергии, то максимально возможное изменение температуры $\Delta T_{\rm max}$ проводника за промежуток времени Δt = 1 мин равно ... **K**.
- **28.** Тонкое проволочное кольцо радиусом r=3.0 см и массой m=98.6 мг, изготовленное из проводника сопротивлением R=81 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x=kx$, где k=2.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0=3.0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **29.** Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}$ = 35 мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}$ = 60 мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}$ = 66 В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

30. На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=500$ нм. Если максимум четвертого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное